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NOMENCLATURE

s : force per unit area, : effective density of the internal air in porous media, : angular frequency,     : particle

displacement vectors in the region of an element for porous media, E : volume elasticity of the internal air in porous

media, p : pressure, : matrix comprised of shape functions for porous media,     : particle displacement

vectors at nodal points in the element for porous media, : kinetic energy for porous media, : strain energy for 

porous media,  : external work for porous media,   : element stiffness matrix for porous media, :

element mass matrix for porous media, : nodal force vector for porous media, e , Ee : effective density and

volume elasticity for media in the region of the elements for porous media, ,   : matrix consisted of shape

functions and their derivatives, e* : complex effective density, j : imaginary unit, eR , eI : real part and imaginary

part of e*, Ee* : complex volume elasticity, EeR ,EeI : real part and imaginary part of Ee*, : real part of  ,
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   : material damping due to flow resistance,      : real part of    , : damping effect concerning hysteresis,e R feKfeK e

: stress vector for solid bodies,   : matrix including modulus of elasticity and Poisson’s ratio for solid bodies,D

: strain vector for solid bodies,    : matrix comprised of differential operators, : displacement vector for

solid bodies,   : shape functions of solid bodies, : displacements at nodal points for solid bodies, :

kinetic energy for solid bodies,   : strain energy for solid bodies,   : external work for solid bodies, ,   :

element stiffness matrix and element mass matrix for solid bodies, : nodal force vector in an element e for

solid bodies, : real part of element stiffness matrix for the solid bodies, : total number of elements, :

nodal force vector, : nodal displacement vector in global system which is consisted of      and  ,   :
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matrix containing       and  , superscript(n) : the n-th eigenmode, : real part of complex eigenvalue,(
feRK

seRK )n

  : complex eigenvector,     : modal loss factor,  : small parameter, : maximum value among

the elements’ material loss factors   and   ,  : share of strain energy of each element to total strain energy,
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: share of kinetic energy of each element to total kinetic energy, : approximated eigenmodes, :

acceleration vector at the response point, : modal mass 
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ABSTRACT

We have developed a technique for estimating damped vibration of automotive body panels with sound-proof

structures. It calculates damping properties for three – dimensional sound-proof structures involving elastic body,

viscoelastic body and porous media. For elastic and viscoelastic body displacement are modeled using

conventional finite elements including complex modulus of elasticity. Both effective density and volume elasticity

have complex quantities to represent damped sound fields in the porous media. Particle displacement in the media

is discretised using finite element method. Displacement vectors as common unknown variables are solved under

coupled condition between elastic body, viscoelastic body and porous media. Further, explicit expressions of modal

loss factor for the mixed structures are derived using asymptotic method. Frequency responses were calculated for

automotive test panel laminated with viscoelastic and porous materials using this technique. The results calculated

almost agreed with the experimental results.

1 INTRODUCTION 

Automotive body panels are laminated with damping materials and sound insulation materials to prevent

noise in the cabin. An automotive body panel, which is made of steel sheet press-molded into a required form,

is laminated with damping materials to reduce the vibration level. Furthermore, porous media, and PVC sheet

(surface material) are laminated on the damping materials. Sandwiching the porous media between the panel

and the PVC sheet realizes a double-walled sound insulation structure (Fig.1). In this way, solid materials

(elastic and viscoelastic materials), porous media and gas (air) coexist in the sound isolation structure for the

automotive body panel. Fig.2 shows the results of vibration level measurement of the front (hereafter called Ft)

floor (acceleration response). In this measurement the mounted at part of Ft suspension was selected as

vibration excitation point to estimate road noise. The vibration was measured under the panel (“Panel” in the

figure) and on the PVC sheet (“PVC” in the figure). The difference of the vibration levels of the two areas is

small until 200 Hz, while it becomes greater at larger noises. 

From the above, for predicting the high-frequency road noise (200 – 500 Hz), it is essential to predict the

vibration noise characteristics of the sound-proof structure, especially the surface material (PVC sheet) which 

emits in-vehicle noise, and numerical calculation is a possible technique for this. This study proposes a numerical

analysis method for a sound-proof structure where an elastic material, a viscoelastic, porous media and air,



designed with complicated sound-proof structures of automotive body panels. The finite element method is used to

handle any shapes and boundaries. The method is designed to solve coupled problems of solid materials, porous

media and air. In addition, an approximate calculation method is proposed for the modal loss factor of the

complicated sound-proof structure. With this new technique, a vibration analysis of a panel modeling the

automotive panels was performed and the results were compared with experimental results for accuracy

verification.
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Fig.1 Automotive panel laminated with viscoelastic body and porous material. 
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Fig.2 Effect of porous media to reduce vibration of front floor. (Driving point : front cross member)

2 ANALYSIS METHOD 

This chapter introduces a numerical analysis method for vibration damping characteristics of coupled

problems of vibration and acoustics where an elastic, a viscoelastic, porous media and gas. These

components are expressed as finite elements and superposed tacked in consideration of coupling in order to

handle any structures having arbitrary shapes. First, the section 2.1 will suggest a numerical analysis method

by discretizing particle displacement in a damped sound field. Then the section 2.2 will explain finite elements

of the displacement field for solid bodies (elastic and viscoelastic). The section 2.3 will explain the discrete

equation for the global coordinate where solid bodies, porous media and gas coexist. In the section 2.4, an

equation will be derived that approximately calculates the modal loss factor of the global coordinate by

applying the asymptotic method. Finally, the section 2.5 will introduce an equation for damped vibration

response using the MSKE method.



2.1 DISCRETIZED EQUATION FOR INTERNAL GAS IN POROUS MEDIA 

First, the sound field of internal air in porous media is discretized using finite elements. Assuming

infinitesimal amplitude, the equation of motion of inviscid compressive perfect fluid can be expressed under

periodic oscillation as follows [5]-[7].

grad s = – 2 {u f } (1)

The equation of continuity is represented by the following equation.

s = E div {u f} (2)

Where,     is the displacement vector of particles. s is the force per unit area. This s is a parameter that is

introduced to adjust force when the structure and the sound filed are joined. It has a relationship with the

pressure as . E is the volume elasticity and is the effective density of the internal air in porous

media.  is the angular frequency.

ps

fu

Conventional acoustic analysis often eliminate the particle displacement in equations (1) and (2), and derive

an equation of motion which treats the pressure as unknown. In this study, however, the pressure is eliminated

from the two equations and the particle displacement is retained as unknown. An advantage of this technique

is that the displacement can be used as a common unknown for solid bodies. This allows easy superposition

of elements between solid bodies and the sound field [7]. And makes the calculation method more suitable for

complicated problems where solid bodies, porous media and gas are divided into many regions. On the other

hand, while the unknown for the pressure is a scalar variable, the unknown for the particle displacement is a

vector variable, which requires a larger number of calculations.

Relations between and the particle displacement at nodal points in the element can be

approximated as follows.
fef

uu

{u f} = [Nf ]
t {u f e} (3)

Where , represents a matrix comprised of appropriate shape functions.t
fN

Irrotational condition is : 
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The kinetic energy , the strain energy , and external work are obtained from equation (1), (2) and

(3). The following expressions can be derived by applying the minimum energy principle                  .
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[M]f e = e[M]f e (5)

[K ]f e = Ee[K ]f e
(6)

Where, is the nodal force vector, is the element stiffness matrix, and is the element mass

matrix. and are the effective density and the volume elasticity for media in the region of element.
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and are the matrix consisted of the shape functions and their derivatives. 
e
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Equations (4), (5) and (6) are kinetic equations for the element that is linear compressible perfect fluid.

These equations can be used as element equations for acoustic problems of gas under undamped conditions.

For expressing the sound in the porous media, a model is proposed which converts the complex effective

density and the acoustic velocity or complex volume elasticity, and its effectiveness is confirmed [4][5][10]-[12].

Based on this method, the following equations are obtained.

e e
* = eR + j eI (7)

Ee Ee
* =E eR + j E eI (8)

This model is mainly applied to textile materials such as glass wool. It ignores the influence of the elastic

wave which transmits the frames of porous media, and assumes that the motion of gas is the dominant

determiner. The model effectiveness is verified for porous media when their frame materials have adequate

flexibility and large damping [4][5][9], and automotive sound-proof materials are often the case. On the other

hand, when the frame materials of porous media are made of rigid materials such as metal, the elastic wave

transmitting through the frames have larger influence than the air wave. In this case other models such as 

Biot’s model will be required [13][14].

The element mass matrix is obtained as follows by substituting equation (7) into equation (5). feM

(9)[M]f e = [MR]f e (1 + j e )

e = e I / eR
(10)

Where, is the real part of     . The imaginary part of the effective density is a term related to the

flow resistance of the porous media, and corresponds to the material dumping caused by the 

flow resistance.
e /

feM
feRM eI

eReI

In the same way, the element stiffness matrix is obtained by substituting equation (8) into equation (6).eK

(11)[K ]f e = [K R]f e (1 + j e)

(12)
e = E e I /E eR



Where,     is the real part of the     . is the material damping corresponding to the hysteresis in the

relationship between the pressure and the volume strain (loss factor; all the damping values below are loss 

factors).

efeKfeRK

From the above, among the elements for the sound field in the porous media, the element stiffness matrix

and the element mass matrix are both expressed with complex quantities. Gas such as air can be

expressed by lowering their damping parameters, and   . The parameters   ,    , and can be

identified by an experiments using a impedance tube [5][10].

e E

feK feM

eeR eRe e

Prior to this study, we proposed an analysis method of the field using the fine element method where solid 

bodies are not included but porous media and air coexist. This method consists of the procedure similar to the

above, except that the pressure is treated as unknown instead of the particle displacement. The effectiveness

of the method is confirmed regarding the damped response and the modal loss factor [4][11][12]. The

proposed method in this new study is an enhanced version of the previous method to apply to coupled

problems which also include solid bodies. 

2.2 DISCRETIZED EQUATION FOR VIBRATION IN DAMPED SOLID BODIES

The vibration field of a solid bodies is discretized conventionally with the finite element method [15], using

the following equations (13) – (17). 

The relationship between the stress and the strain, and the relationship between the strain and the

displacement are expressed as follows.

D (13)

suA (14)

Where,     is the stress vector,     is the strain vector, and is the displacement vector of the solid

bodies. is the matrix including modulus of elasticity and Poisson's ratio, and is the matrix comprised of

differential operators.
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By using the matrix comprised of shape functions , the relationship between the element displacement
s
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and the nodal displacements    is approximated as follows.su
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The following equation is obtained by obtaining the kinetic energy , the strain energy   , and the external

work  , and applying the minimum energy principle                . 
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Where, is the nodal force vector in an element e for solid bodies,   and   are the element

stiffness matrix and the element mass matrix for solid bodies, respectively.
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In order to express the viscoelastic material with hysteresis damping as a finite element, it is necessary to

convert the elasticity in equation (13) into a complex modulus [3][16]. By doing this, the element stiffness

matrix in equation (16) is also represented by a complex quantities as follows.

D

eseRse jKK 1 (17)

Where, is the material loss factor corresponding to each element e, and is the real part of the

element stiffness matrix for solid bodies. 

e R seK

2.3 DISCRETIZED EQUATION IN GLOBAL SYSTEM

At the boundary of a solid bodies and gas or a solid bodies and porous media, only the displacement in the

normal direction toward the boundary is continuous. By taking this into account and using equations (4) – (17),

all the elements in an intended field (the complicated space of gas, porous media and solid bodies) are

stacked to obtain the following discrete equation for the global coordinate [7].
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Where, is the total number of elements and is the external force vector. is the nodal

displacement vector in global system, which consists of and    . Similarly, consists of

e
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and     , while consists of and . In this equation, of the solid elements must be 0. eeRM
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From the above, for the system where solid bodies, porous media and gas coexist, the stiffness matrix and

the mass matrix are both expressed as complex quantities.

2.4 APPROXIMATE CALCULATION OF MODAL DAMPING (MSKE METHOD)

This section explains the approximate calculation of the mode damping of the global coordinate. The

complex eigenvalue problem of equation (18) is represented by the following equation. 
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Where,     is the real part of the n'th order complex eigenvalue, is the n'th order complex eigen

mode, and is the n'th order modal loss factor.
tot

*n2n

n

Among the material damping   , (e=1,2,3,…, ), the largest number is expressed as . In addition,

the following value is defined and introduced.

ee e maxmax

(20)se = e / max , se 1, ke= e / max, ke 1

Here, by assuming and introducing the small parameter , equation (19) is asymptotically

expanded as follows.
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and      , therefore if , then and          , and and     are also negligible

amounts like   . In addition,  ,  , and are real

quantities.
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Then by substituting Equation (21) – (23) into equation (19) , the orders and are respectively

combined as the following equations. 
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Furthermore, by arranging equations (24) and (25), equation (26) is obtained.
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According to these expressions, modal loss factor can be approximately calculated using material loss

factors of each element e concerning elasticity, share of strain energy of each element to total strain

energy, material loss factors of each element e concerning effective density and share of kinetic

energy of each element to total kinetic energy. The eigen modes in equation (26) are real, which is easily

obtained by solving equation (24), which is obtained by ignoring all the damping terms, as real eigenvalue

problem. Equation (26) is an extended method of the MSE method, which calculates the modal loss factor of a

structure where an elastic and a viscoelastic coexist, and Modal Strain and Kinetic Energy Method (MSKE 

method), which calculated the modal loss factor of a sound field where porous media and gas coexist

[4][11][12].
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2.5 DAMPED VIBRATION RESPONSE USING MSKE METHOD

The acceleration response that uses the modal loss factor obtained from equation (26) and the modal

parameter obtained from real eigenvalue analysis is represented by the following equation.
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Where,    is the acceleration vector at the response, is the external force vector at the excitation point,A F

is the n'th order mode vector at the excitation point, and is n'th order modal mass. )( n m n( )

3. ANALYSIS RESULTS AND TEST VERIFICATION

3.1 DAMPED VIBRATION ANALYSIS AND TEST ( ELASTIC + POROUS MEDIA + VISCOELASTIC

MATEZRIAL)

A vibration analysis was performed with a FE model. A beaded panel, porous media (felt) and a

viscoelastic material (PVC) were laminated to model the automotive panel, as shown Fig. 3. Bead is a

groove for reinforcing stiffness and the beads on the panel used in this study are 4 mm high. With a similar test

piece, the vibration response (hereafter “response” means acceleration response) was also measured as 

shown in Fig. 4. The beaded panel was made of 0.7 mm thick steel sheet and constrained by a peripheral jig

with bolts. The felt was 20 mm thick. Around the felt was the wall of the jig, which prevented the leakage of air

in the felt and closed boundary condition could be assumed. The boundary condition of the surface material

(PVC : 1.8 mm thick) was free. The surface material and the felt were adhered. Although the panel and the felt 

were not adhered, there was no clearance between them. The FE model was modeling using solid elements

with the mesh pitch of 10 mm (except for thickness direction). For the boundary condition of the beaded panel,

springs were installed in the X, Y, and Z directions to account for stiffness of the jig. The boundary conditions

of the sides of the felt were rigid wall in the normal direction and free in the tangential direction. Displacement

of the surface material and the particle displacement in the internal air are continuous only in the normal

direction towards the boundary surface. This continuous condition is applied to the particle displacement in the

air in the felt and the panel displacement.

First of all, the vibration response of the beaded panel was measured without felt and PVC. And the

spring constants in the X, Y and Z directions which were set on the boundary of the FE model were 

identified so that the resonance frequency and the acceleration response agree with the measurement

results. Fig. 5 shows the identified results: the calculated value agrees well with the experimental value, far to

500 Hz. Secondly, analysis and measurement were performed for the laminated model shown in the Fig. 3.

The material data of the air in the felt was identified by improved two-cavity method [8]. Specifically, the real

part of the effective density eR, the imaginary part eR, the real part of the volume elasticity EeR and the

imaginary part e were respectively set to 2.12kg/m3, -1.97, 1.15×105N/m2, and 0.111. Fig. 6 shows the

experiment and analysis results. In the top graph, a measured response at the surface material for the



laminates is depicted. The measured response of the beaded panel without felt and PVC is also shown in the

same figure. The middle graph compares the analytical results of the same conditions. The analytical

response shows smaller damping values than the experimental one, and there were also some discrepancies

in their damping effect. The modal loss factor of the analysis did not consider the damping due to friction

between the fibers of the porous media and the panel, or between the fibers and the surface material.

Therefore, the modal loss factor was adjusted by adding 0.05, and the response was newly calculated. The

bottom graph shows the new results. A tendency for difference of the vibration levels (decline in the

response level at resonant peaks) is reproduced well. Fig. 7 and Fig. 8 show the vibration modes

resulting from the eigenvalue analysis. The three vibration modes, which appear in the case of the panel only, 

still appear at the laminated panel although the level is lower. In these modes, the surface material and the

panel move in-phase. In addition, the surface material and the panel sometimes show many completely

different vibration modes, as shown in Fig. 8. This indicates the sound insulation effect of the sound-proof

materials.
Response (laser)

Felt (porous) 
Boundary condition : closed

400mm

500mm

Z

Y

X

Excitation

Beaded panel (elastic)
Boundary condition : elastic constraint

PVC (viscoelastic)
Boundary condition : free 

Fig.4 Experimental setup (test piece). 

Fig3 FE model of test piece.
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3.2 MEASUREMENT OF DAMPED VIBRATION (ELASTIC + POROUS MEDIA + VISCOELASTIC)

Under the test conditions shown in Fig. 4, the vibration response was measured. Fig. 9 shows the test

pieces used in the experiment. From the top, beaded panel only (CASE 1); beaded panel and a damping

material (CASE 2);. Multi-layered sound-proof structure in which beaded panel, damping material,

porous media and surface material (CASE 3) are shown. The test results reproduce fairly well the

difference of the vibration levels of the panel and the surface material on an actutal vehicle such as

shown in Fig. 2. In addition, the vibration level of each lamination was clarified.

Fig.9 Test piece.

PVC (viscoelastic)

Felt (porous)

Beaded panel (elastic)

Damping material (viscoelastic)

Beaded panel (elastic)

Beaded panel (elastic)

Damping material
 (viscoelastic)

Case1

Case2

Case3

Fig.10 Response level of test piece.

4. CONCLUSION 

An analysis method based on the three – dimensional finite element method was proposed for the analyzing

the vibration characteristics of the structure in which an elastic, a viscoelastic, porous media, and gas coexist

in order to analyze by CAE the vibration damping problem of complicated sound-proof structures used for

automotive panels. The obtained results are summarized as follows:

1) Porous media was formulated by the model which expressed the sound field of the internal air with complex

effective density and the complex volume elasticity. And the medial was discretized with the element which

treats particle displacement as unknown. Elastic and viscoelastic materials were discretized and formulated

by the element which treats displacement as unknown. By combining these, the coupled problem where an

elastic, a viscoelastic, porous media and gas coexist in any shape was modeled with three – dimensional finite

elements and formulated with displacement as common unknown. 

2) A Modal Strain and Kinetic Energy Method (MSKE method) was developed to apply the approximate

calculation of the modal loss factor by based on the asymptotic method to complicated sound-proof structures.

With this method, the modal loss factor was obtained from the results of real eigenvalue analysis. Therefore,

the number of calculations required was considerably reduced. 

3) A calculation method of the vibration response was developed using the modal loss factor obtained by the

MSKE method. An accuracy test was performed with the test pieces which mimic the automotive floor panel,

and the sufficient calculation accuracy was confirmed. In addition, test pieces reproduced the damped

vibration of the automotive complicated sound-proof structures.
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