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ABSTRACT 

Fatigue life of aluminum beams subjected to random vibrations 
while mounted on a shaker are evaluated. Finite element 
technique is used to obtain stress psd at critical location due 
to the prescribed acceleration psd. Various theories are used 
to estimate the fatigue life corresponding to the calculated 
stress psd. Theoretical values from various theories are 
compared with results obtained from experiment. 

NOMENCLATURE 

E @I] Expected Damage 
E [PI Number of peaks 
K Constant 
NF3 Narrow band 
S Stress range 
T Time 
a, b Constants 
m slope of stress-life curve 
P(s) Peak Stress 
v Irregularity Factor 
E Bandwidth Parameter 

THEORY 

Fatigue under sinusoidal excitation is well understood for 
many years. However, there is no consensus on appropriate 
theory fatigue life under random vibration. As per Newland [I] 
actual lifetime can be 30% to 300% of the theoretical 
prediction. Notable work on random vibration and fatigue life 
has been many researchers including Wirsching et al [Z]. Ford 
[3] and Bishop [4]. 

First finite element analysis (ANSYS) was performed to 
compute stress psd as shown in Figure 3. The stress psd 

obtained from finite element analysis was used to estimate 
fatigue life using the following theories: Dirlik [5], Narrow Band 
[2],Tunna [6,fl, Wirshing [2], Hancock, Kam and Dover [6] and 
Steinberg [9]. These theories are described next. 

Tunna [6.7] proposed a formulation using a revised form of 
Rayleigh PDF for stress ranges as follows: 

p(s) = (s/4ym,) edmym 

For y  = 1 .O, this formula becomes the narrow-band formula 
given earlier. Tunna’s equation was developed with specific 
reference to the railway industry. 

Wirsching’s equation [2] is given by: 

E[D] = E[D],,[a(b)+{l-a(b)){l-e)Ccbq 

where a(b) = 0.926-O.O33b, c(b) = 1.587b - 2.323, and s = 
J(l-y’). E is called the bandwidth parameter, which is an 
alternative version of the irregularity factor. This technique was 
developed with reference to the offshore industry, although it 
has been found to be applicable to a wider class of industrial 
problems. 

Hancock’s equation is given by: 

9, = {2J(2mo))b[vr{(b/2)+l)l 

This solution is given in the form of an equivalent stress range 
parameter S,, where Sbh = Jsbp(S)dS. Hancock’s solution was 
developed for the offshore industry. 

Kam and Dover’s equation [8] was derived using a similar 
approach in which the fatigue damage can be easily obtained 
by substituting this into the general damage equation used 
when deriving the narrow-band solution: 
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E [D] = E[P](T/K)S”, REFERENCES 
This was also developed for the offshore industry. 

PI 
As a rough estimation for the fatigue damage, Steinberg [9] 
proposed a three-band technique. The basis for this method is 
the Gaussian distribution. The instantaneous stresses (or 
accelerations) between +lu (a is the root mean square) and -1 o 
are assumed to act at the lo level 66.3% of the time. The 
instantaneous stresses (or accelerations) between +2o and -20 
are assumed to act at the 20 level of 95.4 - 68.3, or 27.1% of 
the time. The instantaneous stresses (or accelerations) 
between +3u and -30 are assumed to act at the 30 level of 99 - 
95.4, or 4.33% of the time. The fatigue damage is thus 
estimated based on these three stress levels. The Steinberg 
solution method is used by the electronics industry. 
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An aluminum beam as shown in Figure 1 is subjected to 
shaker excitation described in Table 1. Figure 2 shows the 
shaker controller reference created by Table 1. 
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Figure 2 shows the input created by the table. Figure 3 shows 
the stress psd obtained using the acceleration psd input. 
Fatigue life as computed by various theories using the 
software nSofl [IO] is shown in Table 2. 
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Table 3 shows fatigue life observed in the experiment. One 
interesting observation may be made that while fatigue life 
predicted by various theories vary widely and fatigue life 
observed experimentally also vary widely. The mean life 
predicted by various theories is 34.09 min is very close to the 
mean value of 34.27 min observed experimentally. 
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Engng Mat Struct. Vol. 9, No. 3, pp. 169-184, 1986. 

PI Kam, J.C.P. and Dover, W.D., Fast Fatigue 
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85, Part 2, pp. 689 - 700,1988. 

CONCLUSION AND DISCUSSION 

1. Vibration in the first mode seems to be dominant. 

Steinberg, D.S., Vibration Analysis for Electronic 
Equipment, (2nd edition), John Wiley & Sons, New 
York, 1988. 

2. Uncertainties in experiment involving random 
vibration is reflected in the fact that standard 
deviation was about one third the mean value. 

PI 

[lOI nSoft Version 5.2, nCode lnfemafional Inc., 
Sheffield, England, 1999. 

3. While average values predicted by various theories 
agreed very well with average value observed in 
experiment. that may be just a coincidence. Among 
various theories proposed, Didik, Hancock, and Kam 
and Dover seem to be in good agreement with 
experimental results. Wtrshing seems to provide 
upper bound, but no method provided the lower 
bound. 
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Figure 1. Aluminum Beam 
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Figure 2. Base Excitation Input PSD in Random Vibration 
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Figure 3. Stress PSD 

Method Theoretical fatigue life in min 

Dirlik 35.11 

Narrow band 32.03 

Wirsching 

Kam & Dover 33.56 

Steinbem 44.35 

TABLE 2. Theoretical Fatigue Life Computed by Various Theories 
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TABLE 3. Fatigue Life by Experiment 
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