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ABSTRACT   Dynamic properties are governed by mass, stiffness, and damping.  Defects occurring in structural elements will 
influence their dynamic characteristics because of local stiffness variations. The dynamic behavior of a multiple damaged 
beam is very complex due to the nonlinearity of the opening and closing of notches or cracks.  In this paper, the modal 
analysis for a three dimensional free-free ceramic beam with five cracks is performed.  Mode shapes and natural frequencies 
are first obtained using Finite Element Model (FEM), based on which a proper state space model is built to describe the 
dynamic characteristics of the beam including mode response, frequency response, and displacement response.  As a 
representative model of a damaged structure, these can provide an insight into the extent of defects.  In addition, a model 
reduction technique is applied based on sorting the dc gain of the damaged beam. 
 
 
INTRODUCTION  
 
Defects present in vibrating components could affect their vibration response and finally lead to catastrophic failures.  It is 
necessary to investigate the dynamic behaviors of damaged structures.  Modal analysis is an important vibration analysis tool 
for structural diagnostics during the monitoring and servicing of a structural system.  Considerable efforts have been devoted 
to understand the dynamics of damaged beams through modal analysis [1-10].  Ostachowicz and Krawczuk [6] used a spring 
to represent the crack section and performed modal analysis for each segment of the beam using appropriate matching 
conditions at the location of the spring.  The stress intensity factor was used to calculate the equivalent stiffness of the spring 
at the crack location.  Chati and Rand [7] addressed the problem of nonlinear dynamics of the infinite degree of freedom 
cracked beam via calculating piecewise mode shapes and bilinear frequencies.  Shaw and Pierre [8, 9] developed a method 
that is based on invariant manifolds in the state space of nonlinear systems to obtain reduced-order models via nonlinear 
normal modes.  Michael Hatch [10] introduced state space modeling method to simulate the structure vibration.  
 
In this paper, the modal analysis for a damaged free-free ceramic beam is carried out.  There are a total of five cracks with 
different depths at different locations of the beam.  The natural frequencies and mode shapes are obtained using a Finite 
Element Model (FEM).  Through the state space model analysis, the dynamic response of the cracked beam including 
displacement, frequency, and mode responses, and shifts of the frequency are obtained.  DC gain and Modred method are 
introduced for sorting modes and model order reduction.   

 
 

FINITE ELEMENT MODELING 
 
Mathematically, structural modal analysis is an eigenproblem.  The governing equation that governs transverse vibration of 
continuous Euler beam in bending within the x-y plane under its own weight is given as: 
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where ρ is mass density, A is area of cross section, E is Young’s modulus of the beam,  and I is the area moment of inertia of 
the beam cross section.  Writing the solution in the following form: 
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and substituting it into Equation (1), the following eigenvalue problem is obtained: 
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The above eigenvalue problem in differential form can be converted to finite element formulation as: 
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where [M] and [K] are mass and stiffness matrices given as [11]: 
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where ψ  is the shape function of the ith degree of freedom, l is the length of the finite element, and 2
iω is the corresponding 

eigenvalue of the beam.  The square roots of 2
iω , 1ω , 2ω … nω  are called the natural frequencies of the beam.  In addition, 

there is also an n-dimensional vector called eigenvector iU , which can be obtained by using Equation (7): 
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The beam is analyzed for multiple levels of damage.  A 3-D free-free ceramic beam with an increasing number of cracks at 
different locations with different depths was studied.  After analyzing the beam with one crack, the beam is considered to have 
two cracks.  After analyzing the beam with two cracks, let the beam have three cracks.  Finally there are a total of five cracks 
on the beam.  The crack depths and locations (distance to the left end of the beam) are listed in table 1.  The material and 
geometric parameters used to carry out the analysis are: E = 4.2 x 1011 Pa, 3g/cm 2.3=ρ , v = 0.21, length (L) = 45 mm, width 
(b) = 4 mm, and height (h)= 3 mm.  
 

Table 1: Crack depths and locations 
 

 Crack #1 Crack # 2 Crack # 3 Crack # 4 Crack # 5 
Depth (mm) 1.8 0.3 0.8 0.4 0.6 

Location (mm) 22.0 30.1 24.9 27.2 29.0 
 
The commercially available Finite Element package ANSYS was used to obtain the numerical results. The beam was modeled 
using solid, brick, 8-node elements.  This kind of element is used for the three-dimensional modeling of solid structures.  Each 
of the eight nodes has the following three degrees of freedom: translations in the nodal x, y, and z directions.  To achieve more 
accurate results, a finer mesh was used around specified cracked areas.  Table 2 shows the mesh quality and convergence of 
the Finite Element mesh refining process for the case of one crack. 
 
The first two transverse mode shapes for the beam with one crack are shown in Figure 1.  Since the beam is free-free, in 
ANSYS, it will give the motion of the beam in six degrees of freedom (UX, UY, UZ, ROTX, ROTY, ROTZ).  The FEM results of 
the full natural frequencies (transversal, longitudinal, and rotational) for the beam with different cracks are shown in Table 3,   
which shows clearly that the natural frequencies of all the modes decrease with the increase of the number of cracks in the 
beam. 



Table 2:  A convergence study for natural frequencies of the beam with one crack 
 
 
 
 
 
 
 
 
 
 

  
 

            (a) First mode (f = 16,279 Hz),                                                    (b) Second mode (f = 47,554 Hz) 
 

Figure 1:  Mode shapes for the beam with one crack  
 
 

Table 3: Comparison for full degrees of freedom natural frequencies   
 

Frequency (Hz) 
Crack Level 

First Mode Second Mode Third Mode Fourth Mode Fifth Mode Sixth Mode 

Beam without cracks 17,411 22,955 48,398 62,617 75,671 96,330 

Beam with one crack 16,279 22,305 47,554 60,411 73,941 85,339 

Beam with two cracks 16,270 22,297 47,512 60,394 73,902 85,295 

Beam with three cracks 16,173 22,232 47,454 60,331 73,660 85,176 

Beam with four cracks 16,115 22,189 47,408 60,262 73,543 85,097 

Beam with five cracks 16,029 22,132 46,961 60,056 72,706 84,586 
    
The free-free beam has a large number of vibration modes, which require a large amount of computation time.  Since most of 
the higher modes and some of the degrees of freedom have lower analysis value, there is a need to build an appropriate state 
space frequency response model adjunct to the FEM model analysis to separate and examine the important transverse 
vibration responses of the beam.  This state space model can describe dynamic characteristics of the beam, including dc gain 
value, frequency response, and displacement response.  

 
 

STATE SPACE MODEL ANALYSIS 
 
The damped equation of motion is described as: 
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where ζ is the critical damping, iw  is the ith eigenvalue, and liF  is the applied force.  Assuming that only three modes are 
considered, the corresponding equations of motion are: 
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In state space matrix form, BuAxx +=& , Equations (9) - (11) reduce to the following state space equations of motion: 
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Equation (12) can be solved to get the frequency and time domain response.  The matrix A is made up of eigenvalue and the 
damping for each mode.  Matrix B is made up of the applied force at the node.  The state space modal form may then be 
rewritten for each mode as: 
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To identify and sort which modes are critical to the overall beam vibration, the dc gain value in the y-direction (transverse) is 
used.  For both the damped and undamped system, a transfer function is defined as [10]: 
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where nminjiVV  is the product of the jth row of the output eigenvector and the mth row of the ith input, and iω  is the resonant 

frequency which is the eigenvalue of the ith mode.  Letting 0== ωjs , we get the ith mode frequency response at dc.  
Therefore, dc gain is defined as: 
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For Equation (17), letting s = ωj  and 2s = 2
iω− , the peak gain amplitude of each resonance mode is then given as: 
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Therefore, we have: 
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The relationship between the dc gain and peak gain for a mode is that the dc gain term is divided by iζ2  and multiplied by -j, 
which gives a -900 phase shift at resonance.  iζ  is the critical damping which is very small and hence amplifies the response 
with a resonant peak. 
 
Typically, only the dynamic responses of modes that exhibit large amplitudes and/or lie in a certain frequency range are of 
interest.  To obtain an accurate model of a system of coupled differential equations, the modes that lie outside the frequency 
range of interest are first truncated, and then the modes that have small amplitudes are also truncated.  The contribution of the 
truncated modes can be described by the direct dynamic simulation of these modes.  An algorithm named Modred method [10] 
can be used to truncate the modes that are not of interest.  The state space equations are given as: 
 

BuAxx +=&                                                                                  (21) 
 

                                                                                    DuCxy +=                                                                                  (22) 
 
To separate the most important modes from the less important modes, the matrix A, B, and C are rearranged.  The state 

vector is partitioned into kx (to be kept) and ex (to be eliminated): 
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Setting ex& =0 and solving for ex  leads to: 

                                                                       uBAxAAx eeekekeee
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Substituting into Equation 23 yields:  
 

                                                 uBAABxAAAAx eeekekkekeekekkk )()( 11 −− −+−=&                                             (26) 
 
The output y can then be expressed as:  
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And the new state equations are: 
 

                                                                          uBxAx rrrr +=&                                                                                  (28) 

                                                                          uDxCy rrrr +=                                                                                 (29) 



where: 

                                                                         ekeekekkr AAAAA 1−−=                                                                               (30) 

                                                                          eeekekr BAABB 1−−=                                                                                  (31) 

                                                                          ekeeekr AACCC 1−−=                                                                                  (32) 

                                                                          eeeer BACDD 1−−=                                                                                     (33) 
 
This technique can be used to truncate the lower dc gain modes, while retaining the overall system dc gain. 
 
 
RESULTS AND DISCUSSION 
 
Figure 2 shows the plot of frequency versus mode number for the beam with one crack, which helps to understand the 
resonant frequencies of the damaged beam in a particular range of interest.   

 

 
 

Figure 2:  Frequency versus mode number for the beam with one crack 
 

Figure 3 shows the dc gain value of each mode (total 6 modes included) versus the mode number for the beam with one crack.  
The modes are sorted by dc gain in the y-displacement component (transverse vibration).  Mode 2 and mode 4 are vibration 
modes in the x-displacement (longitudinal vibration) and have small dc gain values in the y-direction, as shown in Figure 3.  
That means mode 2 and mode 4 are less important and have less contribution to the total transverse vibration of the beam 
than mode 1, 3, 5, and 6.  Because the rotational vibration also has displacements (eigenvectors) in the y-direction, it is 
possible that the fifth mode (the first mode of rotational vibration) has higher dc value than the sixth mode (the third transverse 
vibration in the y-direction).  
 

 
 

Figure 3:  DC values versus mode number for the beam with one crack 
 

 
The occurrence of well separated vibration modes allows the identification of the modal parameters to be done according to 
the state space and Modred order reduction technique.  Figure 4 shows the overall frequency response with overlaid individual 
mode contributions for all the 6 modes for the beam with one crack.  
 



 
 

Figure 4:  The overall frequency response with 6 modes for the beam with one crack 
 

Comparing the change in natural frequencies, Figure 5 shows the shift of the fundamental natural frequency (first mode) for 
the beam without crack and for the beam with one crack. 
 

 
 

Figure 5: The shift of the fundamental (first mode) natural frequency 
 

Now consider the free-free beam with a total of five cracks. The final frequency response is shown in Figure 6.  It indicates that 
with the increase of the number of cracks, the vibration response is still similar to that of the beam with only one crack.  Mode 
2 and 4 still have small dc gain values and have less contribution to the overall vibration.   
 
Figure 7 shows the natural frequencies of the first mode for the beam without crack (A), one crack (B), two cracks (C), three 
cracks (D), four cracks (E), and five cracks (F).  It can be seen that the natural frequency exhibits strong shift due to the 
presence of cracks.  Comparing case B (one crack) with case C (two cracks), it appears that the second crack has no 
significant influence on the frequency shift due to its small size.  Similarly, comparing C with D, D with E, and E with F, Figure 7 
shows that bigger crack results in larger natural frequency shift.  
 

 
 

Figure 6:  Frequency response for the beam with five cracks, 6 modes included 



 
 

Figure 7:  Shifts of the natural frequency (first mode)   
A— the beam without cracks; B— the beam with the one crack; C— the beam with the two cracks; 

D— the beam with three cracks; E— the beam with four cracks; F— the beam with five cracks 
 
 
 

CONCLUSIONS 
 
The main goal of this paper is to understand dynamic responses of a cracked beam using FEM based modal analysis.  A 
ceramic beam with a total of five cracks has been studied.  The numerical results were obtained by modeling the cracked 
beam with solid brick 8-node elements.  A proper state space model was built using the eigenvalues and eigenvectors from the 
FEM model.  After sorting the modes using dc gain values, an algorithm named Modred method was used to truncate the 
modes that have less contribution to the total vibration response, so that only the important modes within the range of interest 
are extracted and analyzed.  It shows that the modes response have no significant changes compared with that of the beam 
without cracks.  However, the shift of natural frequency due to the crack is obvious, which increases with the increasing crack 
number and shows to be sensitive to the crack size.      
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